首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73041篇
  免费   7590篇
  国内免费   2783篇
电工技术   1093篇
技术理论   1篇
综合类   2816篇
化学工业   27523篇
金属工艺   10686篇
机械仪表   1393篇
建筑科学   1824篇
矿业工程   965篇
能源动力   2589篇
轻工业   9129篇
水利工程   309篇
石油天然气   1105篇
武器工业   334篇
无线电   2736篇
一般工业技术   16719篇
冶金工业   2944篇
原子能技术   276篇
自动化技术   972篇
  2024年   293篇
  2023年   1718篇
  2022年   2388篇
  2021年   3304篇
  2020年   3057篇
  2019年   2617篇
  2018年   2889篇
  2017年   3256篇
  2016年   3247篇
  2015年   3344篇
  2014年   4085篇
  2013年   5217篇
  2012年   4575篇
  2011年   6036篇
  2010年   4085篇
  2009年   4442篇
  2008年   3715篇
  2007年   3938篇
  2006年   3693篇
  2005年   2805篇
  2004年   2745篇
  2003年   2348篇
  2002年   1957篇
  2001年   1292篇
  2000年   1172篇
  1999年   903篇
  1998年   689篇
  1997年   597篇
  1996年   486篇
  1995年   465篇
  1994年   343篇
  1993年   247篇
  1992年   254篇
  1991年   197篇
  1990年   249篇
  1989年   234篇
  1988年   85篇
  1987年   59篇
  1986年   60篇
  1985年   77篇
  1984年   69篇
  1983年   34篇
  1982年   56篇
  1981年   8篇
  1980年   37篇
  1979年   6篇
  1978年   6篇
  1975年   6篇
  1974年   7篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
31.
《Ceramics International》2022,48(3):3368-3373
Over the recent past, lead-based halide perovskite materials have drawn significant attention due to their excellent optical and electrical properties for solar cells and optoelectronics applications. However, the toxicity of lead elements and instability under ambient conditions leads to develop alternative compositions. Herein, we report a novel mechanochemical synthesis of tin iodide-based double perovskites (A2SnI6; A = Rb+, Cs+, methylammonium, and formamidinium), and their structural, optical, and electrical properties are investigated. Importantly, we found that the hydrogen iodide (HI) addition during the ball-milling process minimizes secondary phase formation in the synthesized A2SnI6 powders. The effects of HI addition and the A-site substitution are investigated with respect to the lattice parameters, optical bandgaps, and electrical properties of the synthesized perovskite materials. Our results demonstrate essential information to improve the understanding of halide perovskite materials and develop efficient lead-free perovskite photoelectric devices.  相似文献   
32.
Titanium and boron are simultaneously introduced into LiNi0.8Co0.1Mn0.1O2 to improve the structural stability and electrochemical performance of the material. X-ray diffraction studies reveal that Ti4+ ion replaces Li+ ion and reduces the cation mixing; B3+ ion enters the tetrahedron of the transition metal layers and enlarges the distance of the [LiO6] layers. The co-doped sample has spherical secondary particles with elongated and enlarged primary particles, in which Ti and B elements distribute uniformly. Electrochemical studies reveal the co-doped sample has improved rate performance (183.1 mAh·g-1 at 1 C and 155.5 mAh·g-1 at 10 C) and cycle stability (capacity retention of 94.7% after 100 cycles at 1 C). EIS and CV disclose that Ti and B co-doping reduces charge transfer impedance and suppresses phase change of LiNi0.8Co0.1Mn0.1O2.  相似文献   
33.
A novel CdS/CaFe2O4 (CS/CFO) heterogeneous p-n junction was created by thermal deposition of CaFe2O4 nanoparticles on CdS rods. The CS/CFO hetero-structured photocatalysts exhibited increasingly efficient visible light harvesting compared to the bare CdS. The CS/CFO composites also presented higher photocurrent and slower decay of photoluminescence, suggesting a better separation of the photo-generated electrons and holes. The photocatalytic H2 evolution quantity on the optimized CS/CFO composite from water in the presence of ethanol was up to 2200 μmol after 3-h visible light illumination, which is more than twice that of the pristine CdS. The chemical interaction between CdS and CaFe2O4 was confirmed by the shifts in the XPS peaks, which made it possible for the charge carriers to transfer across the p-n junction interface. This research highlights the importance of forming an interfacial p-n heterojunction between two semiconductors for efficient charge separation and improved photocatalytic performance.  相似文献   
34.
《Ceramics International》2022,48(20):30376-30383
In this study, α/β-Si3N4 composite ceramics with high hardness and toughness were fabricated by adopting two different novel ternary additives, ZrN–AlN–Al2O3/Y2O3, and spark plasma sintering at 1550 °C under 40 MPa. The phase composition, microstructure, grain distribution, crack propagation process and mechanical properties of sintered bulk were investigated. Results demonstrated that the sintered α/β-Si3N4 composite ceramics with ZrN–AlN–Al2O3 contained the most α phase, which resulted in a maximum Vickers hardness of 18.41 ± 0.31 GPa. In the α/β-Si3N4 composite ceramics with ZrN–AlN–Y2O3 additives, Zr3AlN MAX-phase and ZrO phase were found and their formation mechanisms were explained. The fracture appearance presented coarser elongated β-Si3N4 grains and denser microstructure when 20 wt% TiC particles were mixed into Si3N4 matrix, meanwhile, exhibited maximum mean grain diameter of 0.98 ± 0.24 μm. As a result, the compact α/β-Si3N4 composite ceramics containing ZrN–AlN–Y2O3 additives and TiC particles displayed the optimal bending strength and fracture toughness of 822.63 ± 28.75 MPa and 8.53 ± 0.21 MPa?m1/2, respectively. Moreover, the synergistic toughening of rod-like β-Si3N4 grains and TiC reinforced particles revealed the beneficial effect on the enhanced fracture toughness of Si3N4 ceramic matrix.  相似文献   
35.
The aim of this study was to develop high dielectric constant flexible polymers with a highly efficient and cost‐effective approach using acrylonitrile butadiene rubber (NBR) as the polymer matrix and barium titanate (BT) as the high dielectric constant filler. The BT powder was synthesized with a solid‐state reaction and was characterized using a particle size analyzer, XRD, SEM and Fourier transform infrared spectroscopy. NBR/BT composites were fabricated using an internal mixer with various BT loadings up to 160 phr. The influence of BT loading on the cure characteristics and mechanical, dynamic mechanical, thermal, dielectric and morphological properties was determined. The incorporation of BT in the NBR matrix shortened scorch time and increased delta torque. The mechanical properties, thermal stability and dielectric constant were greatly improved and increased with BT loading. The results suggest that the reinforcement effect was achieved due to strong hydrogen bonding or polar–polar interactions between NBR matrix and BT filler. This is further corroborated by the good dispersion of BT filler in the NBR matrix observed with SEM imaging. These findings can be applied to produce high‐performance dielectric elastomers. © 2020 Society of Industrial Chemistry  相似文献   
36.
Improving the piezoelectric activity of lead zirconate titanate (PZT) ceramics is of great importance for practical applications. In this study, the influence of Pr3+ doping on the ferroelectric phase composition, microstructure, and electric properties on the A-site of (Pb1-1.5xPrx)(Zr0.52Ti0.48)O3 is extensively investigated. A dense and fine microstructural sample is obtained with the introduction of Pr3+. The results show that the morphotropic phase boundary (MPB) moves to the rhombohedral phase region. The rhombohedral and tetragonal phases exhibit an ideal coexistence in the 4 mol.% Pr3+ doped (PPZT4) samples. Lead vacancy and the reduction of the potential energy barrier are considered to be the key mechanisms for donor doping, which is upheld by the Pr3+ doping. Combining the I-E hysteresis loops with the P-E hysteresis loops, it becomes apparent that both contribution maximums of the domain switching and residual polarisation are in PPZT4. Moreover, the thermal aging resistance of PZT is improved by doping, and the temperature stability is optimised from 83% in PZT to 96% in PPZT4. Hence, an appropriate amount of Pr3+ doping can effectively improve the piezoelectric activity of PZT ceramics in the MPB area and optimise the performance stability of the material under application temperatures.  相似文献   
37.
This paper carefully evaluates the electrocatalytic activity of Sr2FeMo0.5Mn0.5O6 (SFMM) double perovskite as a candidate to substitute the state-of-the-art Ni/YSZ fuel electrode. The electrochemical performance of a 40% SFMM/CGO composite electrode was studied in CO/CO2 and H2 with different oxygen partial pressure. Two different cell configurations are prepared at a relatively low temperature of 800 °C to increase the electrochemically active surface area. The cell was supported with a 150 μm 10Sc1CeSZ electrolyte in the first configuration. The cell in the second configuration was made by applying a 400 nm thin 8YSZ layer on 150 μm CGO electrolyte to improve the electrolyte ionic conductivity. Improving catalytic activity with increasing oxygen partial pressure is a key characteristic of the developed electrode. The polarization resistance of about 0.34 and 0.56 Ω cm2 at 750 °C in 3%H2O + H2 and 60% CO/CO2 makes this electrode a promising candidate for SOCs application.  相似文献   
38.
The solid solutions based on the pyrochlore-type system Bi2MgNb2-xTaxO9 were formed in the compositional range х = 0–2.0 (Bi1·6Mg0·8Nb1.6-tTatO7.2, t = 0–1.6). The Rietveld method was used to refine the structure for Bi2MgNb2-xTaxO9 (x = 0, 1.0, 2.0). The increasing tantalum content led to the slight decrease in the cubic unit cell parameters from 10.56934 (4) Å for x = 0 and 10.54607 (3) Å for x = 2 (sp.gr. Fd-3m:2). At the same time, tantalum additions suppressed grain growth in the pyrochlore ceramics during sintering and made it possible to obtain materials with an average grain size of 1–2 μm (Bi1·6Mg0·8Ta1·6O7.2). The increase in the Ta5+ concentration led to the decrease in the dielectric permeability from 104 (Bi1·6Mg0·8Nb1·6O7.2) to 20 (Bi1·6Mg0·8Ta1·6O7.2) at room temperature, while the dielectric loss tangent remained lower than 0.002, which is due to the small grain size and the high porosity of the samples. An increase in temperature has practically no effect on the values of the dielectric permittivity in the entire frequency range. The samples have weak through conductivity. The activation energies of electrical conductivity varied in the range of 0.84–1.00 eV, and the less tantalum, the lower the activation energy. The electrical properties of the samples at 200 Hz to 1 MHz are described by the simplest parallel scheme.  相似文献   
39.
In this study, the synthesis and luminescence characterization of Samarium (Sm3+) doped lithium metasilicate (Li2SiO3) phosphor ceramic were investigated. It was presented and discussed the results obtained on the luminescence and other optical studies such as X-ray diffraction (XRD), optical absorption and luminescence properties of Li2SiO3:Sm3+ phosphor ceramic. The Li2SiO3 compound was shown a characteristic phase in XRD. The doping in the lithium compound was not having a significant effect on the basic crystal structure of the material. The maximum photoluminescence (PL) emission for Sm3+ doped Li2SiO3 was observed at 554, 583, 641, 725 nm and bore resemblance to the visible region of the spectrum. The glow curves of all synthesized materials have a complex peak structure after being irradiated with a 90Sr–90Y beta source. In addition, the peak between 400 and 600 nm was seen in the radioluminescence (RL) spectrum because of a wide peak thought to be caused by silicate.  相似文献   
40.
《Ceramics International》2021,47(22):31852-31859
The primary purpose of this work is to introduce the second phase of graphene (G) into non-stoichiometric TiO1.80 successfully and optimize the thermoelectric properties of this composite material through high pressure and high temperature (HPHT) technology. The purpose of doping Ti powder under high pressure is to create a closed reducing atmosphere to change the ratio of titanium to oxygen in the titanium oxide base. The addition of graphene can considerably improve the electrical properties of the material and reduce its resistivity. An X-ray diffractometer, X-ray photoelectron spectrometer, scanning electron microscope, and transmission electron microscope were used to analyze and characterize the phase structure, chemical bond, micro morphology and crystal morphology of the samples. An abundance of grain boundaries and lattice dislocation defects can inhibit the lattice thermal conductivity. We also tested and analyzed the thermoelectric performance of the high-temperature and high-pressure synthetic samples through a variable temperature system. The variation of the absorption intensity of the ultraviolet UV spectrum with wavelength shows that high pressure can reduce the band gap, which is beneficial to the carrier transition and improves the conductivity of semiconductors. HPHT optimizes both the electrical and the thermal parameters of the sample. At a final sintering pressure of 5.0 GPa, the dimensionless figure of merit (zT) of the bulk composite material G/TiO1.80 was found to be 0.23 at 700 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号